Convex hulls of planar random walks with drift
نویسندگان
چکیده
منابع مشابه
Convex Hulls of Multidimensional Random Walks
Let Sk be a random walk in R such that its distribution of increments does not assign mass to hyperplanes. We study the probability pn that the convex hull conv(S1, . . . , Sn) of the first n steps of the walk does not include the origin. By providing an explicit formula, we show that for planar symmetrically distributed random walks, pn does not depend on the distribution of increments. This e...
متن کاملConvex hulls of random walks, hyperplane arrangements, and Weyl chambers
We give an explicit formula for the probability that the convex hull of an n-step random walk in R does not contain the origin, under the assumption that the distribution of increments of the walk is centrally symmetric and puts no mass on affine hyperplanes. This extends the formula by Sparre Andersen (Skand Aktuarietidskr 32:27–36, 1949) for the probability that such random walk in dimension ...
متن کاملConvex hulls of random walks: Large-deviation properties.
We study the convex hull of the set of points visited by a two-dimensional random walker of T discrete time steps. Two natural observables that characterize the convex hull in two dimensions are its perimeter L and area A. While the mean perimeter 〈L〉 and the mean area 〈A〉 have been studied before, analytically and numerically, and exact results are known for large T (Brownian motion limit), li...
متن کاملConvex Hulls for Random Lines
Consider n i .i .d . random lines in the plane defined by their slope and distance from the origin . The slope is uniformly distributed on (0, 27r] and independent of the distance R from the origin . These lines define a set I of n(n 1)/2 intersection points . It was recently shown by Atallah and Ching and Lee that the cardinality of the convex hull of these intersection points is 0(n), and the...
متن کاملRandom Walks with Drift - a Sequential Approach
In this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its associated sequential partial sum process under non-standard sampling. The asymptotic behavior differs substantially from the stationary situation, if there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2014
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2014-12239-8